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Introduction
As the site for numerous biochemical processes—includ-
ing oxidative phosphorylation (OXPHOS), the Krebs cycle, 
β-oxidation of fatty acids, calcium handling, and heme bio-
synthesis—the mitochondrion plays a central role in cellular 
metabolism. As a result, the dysfunction of mitochondria, par-
ticularly in their metabolic activities, has been associated with 
many disorders, including metabolic diseases, cancers, and neu-
rodegenerative diseases, as well as the aging process (Carelli 
and Chan, 2014; Lightowlers et al., 2015).

To maintain their health, mitochondria engage in several 
dynamic behaviors. The main dynamic activities are fusion (the 
joining of two organelles into one), fission (the division of a 
single organelle into two), transport (directed movement within 
a cell), and mitophagy (targeted destruction via the autophagic 
pathway; Fig. 1). From yeast to mammals, these dynamic be-
haviors have been shown to be clearly important in both normal 
physiology and disease states (Labbé et al., 2014; Mishra and 
Chan, 2014). In an early example, deletion of Fzo1p, a yeast 
GTPase essential for mitochondrial fusion, resulted in mito-
chondrial fragmentation, complete loss of mitochondrial DNA 
(mtDNA), impairment of OXPHOS activity, and inability to 
grow on nonfermentable carbon sources (Hermann et al., 1998).

On the surface, these dynamic processes appear mecha-
nistically distinct from the biochemical and metabolic processes 
occurring within the organelle. However, given the central role 
of mitochondria in bioenergetics, it is not surprising that in the 
last several years, multiple lines of evidence have emerged for a 
strong link between mitochondrial metabolism and dynamics. In 

this review, we discuss how metabolism regulates the key mito-
chondrial behaviors of fusion, fission, transport, and mitophagy.

Metabolic control of mitochondrial fusion
Mitochondrial fusion is an evolutionarily conserved process 
that, in mammals, is mediated by three large GTPases of the 
dynamin superfamily (Chan, 2012; Labbé et al., 2014): Mito-
fusin 1 (Mfn1), Mfn2, and Optic Atrophy 1 (Opa1). Because 
mitochondria have double membranes, mitochondrial fusion is 
a two-step process requiring outer-membrane fusion followed 
by inner-membrane fusion. Mfn1 and Mfn2 are integral outer- 
membrane proteins that mediate outer-membrane fusion, 
whereas OPA1 has multiple isoforms associated with the inner 
membrane and mediates inner-membrane fusion. Mitochon-
drial fusion events occur frequently in numerous cell types cul-
tured in vitro, although fusion rates are cell type dependent and 
often occur less frequently in tissues (Pham et al., 2012; Eisner 
et al., 2014). Because the balance between fusion and fission 
controls mitochondrial morphology, genetic deletion of the fu-
sion genes results in severe fragmentation of the mitochondrial 
network and abolishes content exchange between mitochondria 
(Hermann et al., 1998; Chen et al., 2003, 2005). In humans, mu-
tations in Mfn2 cause Charcot–Marie–Tooth disease type 2A, a 
peripheral neuropathy affecting long motor and sensory neurons 
(Züchner et al., 2004). Mutations in Opa1 cause dominant optic 
atrophy, a blindness caused by degeneration of retinal ganglion 
cells (Alexander et al., 2000; Delettre et al., 2000, 2002).

The fusion process is well known to be important for OX-
PHOS activity, particularly through the regulation of mtDNA 
levels. The sensitivity of cells to reduced mitochondrial fu-
sion is context dependent. For example, mouse embryonic fi-
broblasts can tolerate a partial defect in mitochondrial fusion, 
such as loss of either Mfn1 or Mfn2, without much bioenergetic 
consequence. However, cerebellar Purkinje neurons cannot sur-
vive Mfn2 removal, because of loss of respiratory chain activity 
(Chen et al., 2007). Moreover, complete loss of mitochondrial 
fusion caused by removal of both mitofusins or Opa1 results in 
a dramatic decrease in mtDNA content, heterogeneous loss of 
mtDNA nucleoids and membrane potential, and reduced respi-
ratory chain function in both cultured cells and mouse tissues 
(Chen et al., 2005, 2010). Other mechanisms also link these 
proteins with metabolism: Mfn2 maintains coenzyme Q levels 
(Mourier et al., 2015), and Opa1 maintains mitochondrial cris-
tae structure and is critical for respiratory chain supercomplex 
assembly (Cogliati et al., 2013).

Mitochondria are renowned for their central bioenergetic 
role in eukaryotic cells, where they act as powerhouses to 
generate adenosine triphosphate from oxidation of nutri-
ents. At the same time, these organelles are highly dy-
namic and undergo fusion, fission, transport, and 
degradation. Each of these dynamic processes is critical 
for maintaining a healthy mitochondrial population. 
Given the central metabolic function of mitochondria, it is 
not surprising that mitochondrial dynamics and bioener-
getics reciprocally influence each other. We review the 
dynamic properties of mitochondria, with an emphasis on 
how these processes respond to cellular signaling events 
and how they affect metabolism.
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The energetic states of cells are often associated with 
specific mitochondrial morphologies. In yeast, nonfermentable 
culture conditions that force increased OXPHOS activity are ac-
companied by elongation of the mitochondrial network (Egner 
et al., 2002; Jakobs et al., 2003). An analogous study with human 
cells suggested that mitochondria elongate during growth in 
galactose media, which forces cells to rely more heavily on 
OXPHOS for ATP production (Rossignol et al., 2004). Elon-
gated mitochondria have also been observed in other conditions 
associated with increased ATP production (Mitra et al., 2009; 
Tondera et al., 2009). These observations suggest that high OX-
PHOS activity correlates with mitochondrial elongation and is 
consistent with the proposal that elongated mitochondrial net-
works are more efficient at energy generation and capable of 
distributing energy through long distances (Amchenkova et al., 
1988; Skulachev, 2001).

Another possibility, not mutually exclusive, is that in-
creased OXPHOS activity stimulates mitochondrial fusion to 
cause elongation. The development of in vitro fusion assays 
using isolated organelles (Meeusen et al., 2004; Hoppins et al., 
2011) allowed for more detailed investigations regarding the 
regulation of mitochondrial fusion. In isolated organelles, ad-
dition of respiratory chain substrates that promoted OXPHOS 
activity led to stimulation of mitochondrial inner-membrane 
fusion, whereas outer-membrane fusion was unaffected by the 
metabolic state (Mishra et al., 2014). OXPHOS activity stim-
ulates the metalloprotease Yme1L to proteolytically process 
Opa1, leading to activation of its fusion activity.

Opa1 is expressed as a membrane-integrated long form, 
which can then be cleaved to a soluble short form by two dis-
tinct metalloproteases, the ATP-dependent protease Yme1L 
and the membrane potential–dependent protease Oma1. It has 
been well known that the presence of both long and short forms 
correlates with fusion-competent mitochondria (McQuibban et 
al., 2003; Song et al., 2007). In mitochondrial fusion interme-
diates that have undergone outer membrane fusion, proteolytic 
processing of Opa1 at the Yme1L or Oma1 cleavage site was 
sufficient to stimulate inner-membrane fusion (Mishra et al., 
2014). The processing of Opa1 by two metalloproteases allows 
differential regulation of inner-membrane fusion. Proteolysis 
via Yme1L is responsible for OXPHOS-dependent stimulation 
of inner-membrane fusion (Fig. 2). In contrast, when membrane 
potential is dissipated, the long isoform of Opa1 is completely 
cleaved and inactivated (Fig. 2; Ishihara et al., 2006) owing to 
activation of Oma1 (Ehses et al., 2009; Head et al., 2009). A 
variety of cellular stresses can activate Oma1 to cleave Opa1 
(Baker et al., 2014). This mechanism likely contributes to the 
mitochondrial fragmentation found in many forms of mitochon-
drial dysfunction (Duvezin-Caubet et al., 2006). Whereas large-
scale depolarization of mitochondria clearly inactivates Opa1, 
transient depolarizations of mitochondria may partially activate 
Oma1 and be pro-fusogenic. Transient mitochondrial depolar-
izations have been reported to occur in cultured cells and are 
associated with fusion events (Santo-Domingo et al., 2013). It 
should be noted that cells lacking Yme1L and Oma1 do retain 
residual mitochondrial fusion activity (Anand et al., 2014) and 
more work will be needed to dissect how inner-membrane fu-
sion is regulated in this situation.

Together, these studies suggest that the inner membrane 
proteases Yme1L and Oma1 serve as important sensors to link 
metabolic conditions to the inner-membrane fusion machinery. 
In particular, conditions that increase mitochondrial ATP func-
tion lead to enhanced fusion, whereas metabolic signals that 
grossly uncouple the mitochondria result in fusion inhibition. 
These regulatory modes appear to be in play in normal physi-
ology and disease. In skeletal muscle, the more oxidative fiber 
types have enhanced mitochondrial fusion, presumably promot-
ing health of the active mitochondrial population (Mishra et al., 
2015). In mtDNA disease, defects in OXPHOS result in second-
ary defects in mitochondrial inner-membrane fusion (Mishra 
et al., 2014). This regulatory process may help to segregate 
dysfunctional mitochondria and prevent the spread of mtDNA 
mutations to wild-type mitochondria. In the case of skeletal 
muscle, the linkage of fusion to OXPHOS activity may serve to 
restrict mtDNA defects to a localized region of the muscle fiber, 
a phenomenon observed in older individuals and some patients 
with mitochondrial myopathy (Moraes et al., 1992; Elson et al., 
2002; Bua et al., 2006). In addition, the inability of defective 
mitochondria to fuse with the remainder of the organelle pop-
ulation provides a means to segregate mutant organelles into 
small components ideal for autophagic destruction (Twig et al., 
2008), as discussed later.

Other metabolic mechanisms to regulate mitochondrial 
fusion have also been proposed (Fig. 2). Oxidative stress can 
enhance fusion in both isolated organelles and cells. In this 
situation, elevated levels of oxidized glutathione promote  
disulfide-mediated dimerization of mitofusin molecules and or-
ganelle tethering, the first step in the fusion process (Shutt et 
al., 2012). Mfn1 is also regulated by phosphorylation by extra-
cellular signal–regulated kinase, linking the MAPK pathway to 

Figure 1. Overview of mitochondrial metabolism and dynamics. The 
mitochondrion is central to metabolism, being involved in the catabolism 
of numerous substrates, generation of metabolic signals, and sensing of 
metabolic cues. The processes diagrammed are not meant to be exhaus-
tive, but to illustrate the diversity of biochemical pathways that impinge on 
the organelle. Mitochondria participate in macroscopic behaviors (termed 
dynamics) including fusion, fission, transport, and mitophagy. Although 
these behaviors are molecularly distinct from the organelle’s bioenergetic 
reactions, recent studies suggest that metabolism and dynamics are highly 
linked and regulate one another. ROS, reactive oxygen species.
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mitochondrial fusion (Pyakurel et al., 2015). Other studies have 
suggested that fusion may be controlled via the local concen-
tration of GTP. NM23-H4 is a mitochondrially localized nucle-
otide disphosphate kinase that can generate GTP (from GDP) 
in the presence of ATP. Interestingly, NM23-H4 can promote 
GTP loading onto Opa1, and knockdown of NM23-H4 leads 
to fusion defects reminiscent of Opa1 knockdown (Boissan et 
al., 2014). It remains possible that this mechanism allows cellu-
lar ATP levels to be linked to fusion via GTP-loading of Opa1. 
Thus, multiple steps of the fusion process may be independently 
targeted via distinct regulatory mechanisms, potentially provid-
ing an exquisite level of control over the fusion event (Fig. 2).

Metabolic control of mitochondrial fission
As a complement to fusion, fission of mitochondria is equally 
critical for cellular and organismal physiology (Chan, 2012; 
Labbé et al., 2014). Division of mitochondria is mediated by 
Dynamin-related Protein 1 (Drp1), a large GTPase that is re-
cruited to the mitochondrial outer membrane via a collection of 
receptor proteins (Mff, Fis1, MiD49, and MiD50). Once on mi-
tochondria, Drp1 assembles around the tubule and constricts it 
in a GTP-dependent manner to mediate scission. Besides influ-
encing mitochondrial morphology, fission has been implicated 
in multiple functions, including the facilitation of mitochondrial 
transport, mitophagy, and apoptosis. In humans, two clinical 
studies have linked Drp1 mutation to microcephaly, neonatal 
lethality (Waterham et al., 2007), and refractory epilepsy (Van-
stone et al., 2015), and another has linked Mff mutation to two 
cases of developmental delay with neuromuscular dysfunction 
(Shamseldin et al., 2012).

Perhaps the best-known regulatory mechanism for mito-
chondrial fission involves phosphorylation of Drp1. Multiple 
phosphorylation sites and kinases have been identified, and 
many of these events are linked to signaling pathways activated 
by metabolic events. In addition, phosphorylation can activate 

or inhibit Drp1, depending on the site involved. In this review, 
we focus on Drp1 phosphorylation, although it should be 
noted that Drp1 regulation is complex, and several other Drp1 
posttranslational mechanisms have been identified, including 
S-nitrosylation, SUMOylation, and acetylation.

Studies on Drp1 phosphorylation have centered on two 
critical sites. Because studies designate these sites differently 
depending on the species studied, we consolidate the findings 
and refer to the sites as serine 616 (S616) and S637 based on the 
sequence of human Drp1, isoform 1. Protein kinase A (PKA) 
phosphorylation of Drp1 at S637 has been clearly shown to in-
hibit its activity in vitro, promoting overall elongation of the 
mitochondrial network in response to pharmacologic activation 
(e.g., forskolin), β-adrenergic stimulation, or forced exercise 
(Fig. 3; Chang and Blackstone, 2007; Cribbs and Strack, 2007). 
Phosphorylation at S637 is counteracted by the phosphatases 
calcineurin (Cribbs and Strack, 2007; Cereghetti et al., 2008) 
and PP2A/Bβ2 (Dickey and Strack, 2011). Negative regulation 
of Drp1 by phosphorylation at S637 also occurs during mTOR 
inhibition and nitrogen starvation, which increases cAMP levels 
and activates PKA (Gomes et al., 2011; Rambold et al., 2011). 
Even though autophagy is activated during starvation, inhibi-
tion of Drp1 results in enhanced mitochondrial tubulation that 
promotes mitochondrial ATP production and spares the organ-
elles from degradation, because of their increased size.

In contrast, drug treatments that inhibit mitochondrial 
OXPHOS are generally associated with enhancement of fission. 
The most commonly used are the mitochondrial uncouplers 
(e.g., CCCP and FCCP), which result in a rapid and dramatic 
fragmentation of the organellar network in multiple cell types. 
As noted, uncouplers stimulate Oma1 to cleave Opa1, result-
ing in inactivation of mitochondrial fusion. On the fission side, 
dephosphorylation at Drp1 serine 637 via the Ca2+-dependent 
phosphatase calcineurin promotes Drp1 activation and recruit-
ment to the mitochondrial surface (Fig. 3; Cribbs and Strack, 

Figure 2. Metabolic regulation of mitochondrial 
fusion. Mitochondrial fusion consists of outer mem-
brane fusion, mediated by mitofusins, followed by 
inner membrane fusion, mediated by Opa1. Modes 
of regulation include the following: (1) Oxidative 
stress and high levels of oxidized glutathione (GSSG) 
promote trans complexes of mitofusins, facilitated 
by disulfide bonds (red bars), leading to organelle 
tethering and enhanced outer-membrane fusion.  
(2) Inner-membrane fusion is stimulated by OXPHOS 
activity, which enhances Yme1L-mediated proteolytic 
processing of Opa1 from the long form to the soluble 
short form. In isolated organelles, Opa1 proteolysis is 
necessary and sufficient to activate inner-membrane 
fusion. (3) Enhanced ATP levels are potentially linked 
to GTP-loading of Opa1 via the nucleotide diphos-
phate kinase NM23-H4. GTP loading and hydrolysis 
by Opa1 are required for inner-membrane fusion.  
(4) Metabolic stresses, including loss of membrane 
potential, activate the inner membrane protease 
Oma1 and result in complete proteolytic processing 
of Opa1. Short forms of Opa1, by themselves, are 
inactive for inner-membrane fusion.
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2007; Cereghetti et al., 2008). Calcineurin therefore relays met-
abolic stimuli associated with calcium changes into alterations 
in mitochondrial morphology. For example, dysfunction of 
the calcium-buffering activity of mitochondria would increase 
cytosolic calcium levels and potentially trigger calcineurin- 
mediated mitochondrial fission. In addition, mice with calci-
neurin knocked out in skeletal muscle have recently been shown 
to exhibit elongated mitochondria, increased respiratory chain 
activity, resistance to obesity under a high-fat diet, and dimin-
ished exercise performance (Pfluger et al., 2015).

In brown adipose tissue, thermogenesis has been shown to 
involve activation of Drp1 and mitochondrial fission. In this cell 
type, cold exposure results in the oxidation of fatty acids in un-
coupled mitochondria to increase heat production, as opposed 
to ATP synthesis. Intriguingly, the norepinephrine-based signal-
ing events initiated by cold exposure result in PKA activation 
and Drp1 phosphorylation at S616, which activates mitochon-
drial fission (Fig. 3; Wikstrom et al., 2014). Through unclear 
mechanisms, the fission event promotes enhanced uncoupling 
and sensitivity to fatty acids, thereby aiding heat generation. 
Thus, mechanisms to enhance fission may decrease OXPHOS 
efficiency and be useful in times of nutrient excess.

Drp1 phosphorylation at S616 has also been implicated in 
tumorigenesis by oncogenic Ras (Fig. 3; Kashatus et al., 2015; 
Serasinghe et al., 2015). Up-regulation of the MAPK pathway 
by Ras induces Erk1-mediated phosphorylation of Drp1 at S616, 
which results in enhanced mitochondrial fission. Remarkably, 
inhibition of Drp1 function attenuates the oncogenic activity of 
Ras in cell and xenograft models of tumorigenesis. In future 
studies, it will be interesting to determine whether mitochon-
drial dynamics play an important role in tumor cell metabolism.

Finally, regulation of fission may also occur at the level of 
the Drp1 receptor proteins. In cultured cells, Mff appears to be 
the primary receptor, because loss of Mff results in dramatic mi-
tochondrial elongation (Gandre-Babbe and van der Bliek, 2008; 

Otera et al., 2010; Losón et al., 2013). Recent studies show that 
Mff is a phosphorylation substrate for AMP kinase (AMPK; 
Ducommun et al., 2015; Toyoma et al., 2016). This phosphory-
lation event activates Mff and mitochondrial fission, explaining 
how AMPK links energy deficiency to mitochondrial fragmen-
tation (Fig. 3; Toyoma et al., 2016).

Along similar lines, recent crystal structures of the recep-
tor protein MiD51 suggest a potential role for metabolic regu-
lation (Losón et al., 2014; Richter et al., 2014). The cytosolic 
domain adopts an enzymatically dead nucleotidyltransferase 
fold, which contains a high-affinity binding site for the dinu-
cleotides ADP and GDP. Indeed, dinucleotide binding appears 
to be required for receptor function, and the protein potentially 
serves as a sensor for ADP levels. Thus, MiD51 potentially links 
metabolic conditions to enhanced organelle fission (Fig. 3). In-
triguingly, the paralogous receptor MiD49 does not contain this 
mode of regulation, as it does not bind nucleotides despite a 
similar fold and the presence of a binding pocket (Losón et al., 
2015). It is unknown whether MiD49 binds an alternative class 
of ligands that regulates its activity.

Metabolic control of 
mitochondrial transport
Because of their ability to affect local ATP and calcium con-
centrations, the subcellular distribution of mitochondria can be 
extremely important. In a dramatic example, the mitochondria 
of the sperm cell are concentrated in the proximal region of the 
flagellum, where they appear ideally positioned to supply ATP 
for the force-generating motor proteins that drive sperm move-
ment (Woolley, 1970). In a more dynamic example, the mito-
chondria of neurons can traffic to the axon terminals of neurons 
to fuel energy-consuming processes such as synaptic vesicle 
recycling. In many mammalian cells, mitochondrial transport 
is accomplished via the activity of motor proteins working 
along the microtubule network, although transport along other 

Figure 3. Metabolic regulation of mitochon-
drial fission. Fission is mediated by the master 
regulator Drp1, which must be recruited from a 
cytosolic pool onto the mitochondrial surface. 
Receptor proteins on the outer membrane are 
required for Drp1 recruitment and activation 
of fission. For simplicity, only two receptor pro-
teins, Mff and MiD51, are shown. Four modes 
of regulation are color-coded in the diagram: 
(1) Exercise and nitrogen starvation result in 
PKA activation, followed by phosphorylation 
of Drp1 at Ser637, which is inhibitory for fis-
sion because of sequestration of Drp1 in the 
cytosol. (2) Reversal of phosphoS637 can be 
achieved via calcineurin, which is activated 
by metabolic uncoupling of the organelle. 
These events lead to recruitment of Drp1 and 
rapid activation of fission. (3) Cold exposure 
and oncogenic RasG12V activate fission via 
Ser616 phosphorylation by PKA or MAPK, 
respectively. (4) Severe energy depletion can 
potentially activate fission via elevation of ADP 
and AMP levels. ADP binding to the MiD51 
receptor is necessary for Drp1 recruitment and 
fission. AMP-sensing by AMPK results in phos-
phorylated Mff and activated fission.
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cytoskeletal elements can also occur (Saxton and Hollenbeck, 
2012). Kinesin motor proteins, particularly the kinesin-1 fam-
ily, mediate transport in the positive (or anterograde) direction, 
whereas dyneins mediate transport in the negative (or retro-
grade) direction (Pilling et al., 2006). The motor proteins are 
connected to the mitochondrial surface through receptor and 
adaptor proteins, whose functions were first revealed in Dro-
sophila melanogaster neurons (Stowers et al., 2002; Guo et al., 
2005). In mammals, the primary receptor proteins are Miro1 
and Miro2, transmembrane GTPases localized in the mitochon-
drial outer membrane. The Miro proteins interact with kinesin 
via the Milton proteins, also known as Trak1 and Trak2. To-
gether, the Miro–Milton–kinesin complex mediates anterograde 
transport of mitochondria along microtubules.

Regulation of mitochondrial transport is particularly im-
portant in neurons, and experiments in the neuronal system 
have been fruitful in identifying the relevant mechanisms. Mito-
chondrial transport behavior in axons is complex and involves a 
balance between movement and stalling. In axonal segments, a 
substantial fraction of the mitochondria is immobile at any given 
time. High calcium levels tend to cause pausing of mitochondria 
in axons, a phenomenon that may help to retain mitochondria 
at active sites along the axon. Because Miro contains regulatory 
EF-hands that bind calcium, it is ideally suited to sense local 
calcium levels near the mitochondrion. Multiple mechanistic 

models have been proposed, but they all center on conforma-
tional changes triggered by calcium binding to Miro (Macaskill 
et al., 2009; Wang and Schwarz, 2009; Chen and Sheng, 2013). 
In one model, high calcium causes the Miro–Milton–kinesin 
complex to be released from the microtubule (Fig. 4 A; Wang 
and Schwarz, 2009). In another model, high calcium causes the 
Miro–Milton complex to release kinesin, thereby freeing mi-
tochondria from the microtubule (Macaskill et al., 2009). In 
the third, most recent model, mitochondrial pausing in axons 
is mediated by the protein syntaphilin, which serves to anchor 
axonal mitochondria to microtubules (Kang et al., 2008; Chen 
and Sheng, 2013). With high local calcium, kinesin is released 
by the Miro–Milton complex and binds syntaphilin, which sub-
stantially reduces its motor activity (Chen and Sheng, 2013).

Other mechanisms have been suggested to directly link 
mitochondrial transport to energy status. ATP depletion or 
hypoxia promotes anterograde mitochondrial movement into 
axons (Mironov, 2007; Li et al., 2009; Tao et al., 2014) via ac-
tivation of AMPK or HIF-1α pathways. Alternatively, nutrient 
status has also been implicated in direct control of organelle 
transport. Milton interacts with and serves as a substrate for 
O-GlcNAc transferase, which glycosylates the adaptor at sev-
eral residues. In the presence of high glucose, glycosylation of 
Milton results in immobilization of the mitochondria, although 
the precise mechanism is still unclear (Fig. 4 A; Pekkurnaz et 

Figure 4. Metabolic regulation of mitochon-
drial transport and mitophagy. (A) In mam-
mals, mitochondrial transport is primarily 
mediated by microtubule-dependent motors, 
such as kinesin for anterograde movement. 
Kinesin-1 attaches to mitochondria via its 
adaptor (Milton) and receptor (Miro). The 
Miro–Milton–kinesin complex allows for or-
ganelle movement under basal conditions. 
(1) At active synapses of neurons, increased 
Ca2+ levels result in pausing of mitochon-
dria to supply local ATP to drive energy- 
intensive processes such as synaptic vesicle 
recycling. Depending on the model, Ca2+ 
loading of the EF-hands of Miro is followed 
by either release of the Miro–Milton–kinesin 
complex from the microtubule or anchoring of 
the mitochondrion via syntaphilin. (2) Elevated 
glucose levels also promote stalling, caused 
by O-GlcNAc transferase (OGT)-mediated 
glycosylation of Milton. Although glycosylated 
Milton is depicted in the syntaphilin model, 
this is for convenience; the precise method by 
which glycosylation of Milton mediates stalling 
is unclear. This regulatory pathway may allow 
mitochondria to be positioned at locations of 
nutrient abundance, increasing their efficiency 
of ATP generation. (B) Multiple mechanisms for 
regulation of mitophagy have been proposed: 
(1) Mitochondrial damage leading to loss of 
membrane potential (ΔΨm) causes Pink1 ac-
cumulation (not depicted), followed by Parkin 
recruitment and ubiquitination of multiple outer 
membrane proteins. These events activate the 
outer membrane for processing via the prote-
asome system (UPS), followed by targeting to 
autophagosome membranes. (2) Severe en-
ergy depletion leads to activation of AMPK, 
followed by phosphorylation and activation of 

the autophagy regulator ULK1. ULK1 is then able to activate generalized autophagy, including mitophagy. (3) Hypoxia is able to activate mitophagy via 
the dephosphorylation of FUNDC1 (on the outer membrane) by the PGAM5 phosphatase. Dephosphorylated FUNDC1 serves to recruit LC3 and autopha-
gosomal membranes. (4) Through unknown mechanisms, enhanced OXPHOS activity in the mitochondrion recruits the autophagy regulator Rheb to the 
outer membrane receptor Nix. Mitochondrially-localized Rheb then promotes autophagy via recruitment of LC3 molecules.
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al., 2014). This posttranslational modification may serve to en-
rich mitochondria at locations with high nutrients, promoting 
increased efficiency of ATP production.

Metabolic control of mitophagy
The overall mitochondrial mass within a cell is likely regulated 
by a balance between biogenesis and degradation. When mito-
chondria are excessive, or become aged or defective, organelle 
clearance is thought to occur primarily through autophagy, a 
process termed mitophagy. The removal of mitochondria can be 
either random or selective. During bulk autophagy, mitochon-
drial degradation is included as part of a generalized autophagy 
program activated by the metabolic state of the cell. In other 
cases, mitophagy is a culling process that selectively degrades 
only defective mitochondria, thereby maintaining the overall 
health of the mitochondrial population.

Although there is widespread interest in mitophagy as a 
potential quality control process for mitochondria, it should be 
noted that in vivo evidence for the importance of mitophagy in 
mitochondrial homeostasis remains sparse. In particular, studies 
on the Pink1/Parkin system (described in the next paragraph) 
have usually relied on overexpressing Parkin and stressing the 
cells with an uncoupler. Although such approaches are extremely 
valuable in dissecting the biochemical pathway, further studies 
are required to determine the in vivo function of mitophagy. The 
recent development of a mouse reporter for tracking mitophagy 
in vivo (Sun et al., 2015) will be helpful in this regard.

The best-studied mitophagy pathway involves Pink1 
and Parkin, genes responsible for some cases of familial 
Parkinson’s disease. Pink1, a mitochondrially localized ki-
nase, is normally imported and degraded within the organ-
elle. Because protein import is dependent on mitochondrial 
membrane potential, depolarization results in accumulation 
of Pink1 on the outer membrane (Matsuda et al., 2010; Na-
rendra et al., 2010). The accumulated Pink1 phosphorylates 
numerous proteins, including ubiquitin, to recruit and activate 
Parkin, an E3 ligase (Okatsu et al., 2015). Activated Parkin 
results in widespread ubiquitination of mitochondrial out-
er-membrane proteins, whose degradation by the 26S prote-
asome (Chan et al., 2011; Sarraf et al., 2013) is required for 
targeting of the mitochondrion to autophagic membranes. 
Because Parkin is selectively enriched on dysfunctional mi-
tochondria, healthy organelles are spared from autophagic 
degradation. Pink1 and Parkin have also been implicated in 
another mitochondrial quality control pathway, distinct from 
autophagy, in which vesicles bud off from mitochondria and 
are trafficked to the late endosome and lysosome (McLelland 
et al., 2014; Sugiura et al., 2014).

Mitophagy can be activated under certain cellular stresses. 
With energy stress, activation of AMPK results in phosphoryla-
tion of ULK1 and ULK2, mammalian protein kinases that are 
orthologues of the autophagy gene ATG1 (Egan et al., 2011). 
ULK1 and ULK2 promote autophagy, including the degrada-
tion of mitochondria. AMPK also inhibits the growth-promoting  
mTORC pathway, which normally inhibits ULK function. 
These interlinked mechanisms couple mitophagy to the nu-
trient status of the cell.

Hypoxic conditions are also able to trigger mitophagy via 
a distinct pathway. Activation of the mitochondrial phosphatase 
PGAM5 results in dephosphorylation of the mitochondrial au-
tophagy receptor, FUNDC1. The dephosphorylation event pro-
motes the interaction of FUNDC1 with ATG8 (also known as 

LC3), stimulating formation of the autophagic membrane (Liu 
et al., 2012; Chen et al., 2014). It is not clear how hypoxia ac-
tivates PGAM5, and whether this mechanism is selective for 
individual mitochondria.

Finally, metabolic conditions that promote increased 
mitochondrial function are also associated with increased mi-
tophagy (Melser et al., 2013). Under glucose-free (oxidative) 
conditions, mitochondrial OXPHOS is up-regulated, and bulk 
mitophagy is also enhanced. The small GTPase Rheb is proposed 
to be involved, as it partially localizes to the outer mitochon-
drial membrane under oxidative conditions and interacts with 
the mitochondrial autophagy receptor, Nix. The relocalization 
of Rheb promotes the recruitment of LC3 molecules, thereby 
enhancing mitophagy. The molecular signals that recruit Rheb 
are currently unclear. The promotion of mitophagy during ox-
idative conditions, when mitochondrial function is increased, 
appears to contrast with previous mitophagy models in which 
dysfunctional organelles are cleared. However, enhanced re-
spiratory chain activity may promote damage to mitochondria 
(e.g., through increased production of reactive oxygen species), 
and it is possible that Rheb is specifically responding to these 
damaged mitochondria. Alternatively, this mechanism may 
be in place to increase bulk turnover of the population during 
conditions of increased functional demand. In either case, the 
increased mitophagic flux promotes overall energetic efficiency 
of the organelle population.

Future directions
It is becoming clear that the multiple functions and behav-
iors of the mitochondrion do not operate independently but 
instead influence each other and are subject to common reg-
ulatory pathways. For instance, depolarization of the organ-
elle triggers fission, inhibits fusion, and promotes mitophagy, 
whereas hypoxia promotes transport, mitophagy, and fission. 
Predicting how the cell integrates multiple signals to regulate 
mitochondrial function is therefore complex and dependent on 
the specifics of the stimuli, as well as the cell type. It is clear, 
however, that the organelle is responsive to numerous types 
of metabolic stimuli, and this likely has resulting effects on 
the health and function of the organelle population. A future 
challenge will be to integrate the data from numerous studies, 
functions, and perturbations to further our understanding of 
the regulatory biology of mitochondria and its implication in 
normal physiology and disease states. Understanding how to 
regulate mitochondrial behavior may provide therapeutic ap-
proaches to modulate mitochondrial physiology in diseased 
states. We have only begun to investigate a few aspects of 
the dynamic behavior of mitochondria. Additional properties, 
such as its interaction with other organelles, including lipid 
droplets and the endoplasmic reticulum, are only beginning 
to be understood and likely will have clear implications on 
overall cellular function.
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