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Dietary palmitate and oleate differently modulate insulin sensitivity
in human skeletal muscle
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Abstract
Aims/hypothesis Energy-dense nutrition generally induces insulin resistance, but dietary composition may differently affect
glucose metabolism. This study investigated initial effects of monounsaturated vs saturated lipid meals on basal and insulin-
stimulated myocellular glucose metabolism and insulin signalling.
Methods In a randomised crossover study, 16 lean metabolically healthy volunteers received single meals containing safflower
oil (SAF), palm oil (PAL) or vehicle (VCL). Whole-body glucose metabolism was assessed from glucose disposal (Rd) before
and during hyperinsulinaemic–euglycaemic clamps with D-[6,6-2H2]glucose. In serial skeletal muscle biopsies, subcellular lipid
metabolites and insulin signalling were measured before and after meals.
Results SAF and PAL raised plasma oleate, but only PAL significantly increased plasma palmitate concentrations. SAF and PAL
increased myocellular diacylglycerol and activated protein kinase C (PKC) isoform θ (p < 0.05) but only PAL activated PKCɛ.
Moreover, PAL led to increased myocellular ceramides along with stimulated PKCζ translocation (p < 0.05 vs SAF). During
clamp, SAF and PAL both decreased insulin-stimulated Rd (p < 0.05 vs VCL), but non-oxidative glucose disposal was lower
after PAL compared with SAF (p < 0.05). Muscle serine1101-phosphorylation of IRS-1 was increased upon SAF and PAL
consumption (p < 0.05), whereas PAL decreased serine473-phosphorylation of Akt more than SAF (p < 0.05).
Conclusions/interpretation Lipid-induced myocellular insulin resistance is likely more pronounced with palmitate than with
oleate and is associated with PKC isoforms activation and inhibitory insulin signalling.
Trial registration ClinicalTrials.gov.NCT01736202.
Funding German Federal Ministry of Health, Ministry of Culture and Science of the State North Rhine-Westphalia, German
Federal Ministry of Education and Research, European Regional Development Fund, German Research Foundation, German
Center for Diabetes Research.
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GIP Gastric inhibitory polypeptide
GLP-1 Glucagon-like peptide-1
JNK Jun N-terminal kinase
GOX Glucose oxidation
iAUC Incremental AUC
LOX Lipid oxidation
NOXGD Non-oxidative glucose disposal
nPKC Novel protein kinase C
PAL Palm oil
PP2A Protein phosphatase 2A
Rd Rate of glucose disposal
REE Resting energy expenditure
SAF Safflower oil
VCL Vehicle

Introduction

Western-style diets, as defined by high intake of energy and
fat, have been related to the rising prevalence of insulin-
resistant states such as obesity and type 2 diabetes [1, 2].
Although current guidelines recommend diets low in saturated

fatty acid (FA) for type 2 diabetes and CVD, the evidence
remains limited [3, 4].

Previously, we have demonstrated that the skeletal muscle
insulin resistance in obesity and type 2 diabetes associates
with activation of the myocellular diacylglycerol (DAG)–
novel protein kinase C (nPKC) isoform θ pathway, an inhib-
itory cascade of proximal insulin signalling [5, 6]. In line with
results from preclinical models [7], we showed that this path-
way is also operative in glucose-tolerant humans upon i.v.
infusion of lipid emulsions containing predominately mono-
unsaturated FA, as well as in obese individuals and those with
type 2 diabetes without any infusion [6]. Of note, this study
did not detect changes in other mechanisms that have been
postulated to induce insulin resistance, such as sphingolipid
mediators, abnormal mitochondrial function or low-grade
inflammation, in some [8] but not all previous human studies
[6, 9, 10]. Among other causes, different outcomes may result
from the degree of NEFA saturation, which can differently
affect metabolism and risk of type 2 diabetes and CVD, as
saturated FA, but not monounsaturated FA, are considered
harmful [11, 12]. Monounsaturated FA availability is known
to activate the DAG–nPKCθ pathway [6], whereas saturated
FA can increase intracellular ceramides and stimulate protein
phosphatase 2A (PP2A) and the atypical protein kinase C
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(aPKC) isoform ζ, which inhibit activation of Akt [1]. On the
other hand, oleate may even protect against palmitate-induced
insulin resistance, as demonstrated in L6 myotubes [13].
However, the temporal sequence of the molecular events in
human skeletal muscle upon ingestion of differently
composed lipid meals remains unknown.

We aimed to compare the acute effects of saturated fat
(palm oil [PAL]) and monounsaturated fat (safflower oil
[SAF]) with water (vehicle [VCL]) on the following variables
in young, lean and metabolically healthy humans (ESM
Table 1): (1) whole-body insulin sensitivity; (2) (sub)cellular
distribution of lipid intermediates; (3) insulin signalling; and
(4) mitochondrial oxidative capacity in skeletal muscle. Thus,
we performed comprehensive metabolic phenotyping using
serial biopsies before and after 2 h, 4 h, as well as 7 h of the
respective interventions (Fig. 1 and ESM Fig. 1).

Methods

Volunteers The study was registered at Clinicaltrials.gov
(registration no. NCT01736202), approved by the ethics
board of Heinrich Heine University of Düsseldorf (reference
3107) and performed according to the Declaration of Helsinki,
2013. All participants (ten men, six women) gave their written
informed consent prior to enrolment in this randomised,
placebo-controlled, crossover trial. Inclusion criteria were
age of 20–40 years and BMI of 20–25 kg/m2. Exclusion
criteria were family history of diabetes, dysglycaemia,
menstrual irregularities, history of smoking, alcohol or drug
abuse and other acute or chronic diseases including cancer, as
well as any medication intake affecting insulin sensitivity,
immune system or lipid metabolism. All volunteers had a
screening visit for medical history and clinical examination,

lean body mass assessment, routine laboratory tests and a 75 g
OGTT. Eligible participants were instructed to maintain and
record a carbohydrate-rich diet and to avoid intense physical
activity for 3 days prior to all study days. Female participants
were examined only between days 5 and 9 of their menstrual
cycle. All participants were randomly assigned to the three
study days, spaced by an interval of 3 weeks (Fig. 1).

Randomisation The random allocation sequence (1:1) was
generated by an expert statistician (PB) using SAS software,
version 9.3. (SAS Institute, Cary, NC, USA). Participants
were randomly assigned to their treatment order by an inde-
pendent person not involved in the study at the German
Diabetes Center (DDZ). The randomisation list was kept by
this person and was not accessible to the study personnel.
Study participants, medical staff and researchers were blinded
until completion of the study.

Experimental protocol The study day comprised three periods
(Fig. 1): pre-basal (−120 min to 0 min); basal (0 min to
+360 min); and clamp (+360 min to +480 min). All partici-
pants arrived at DDZ, after a 10 h overnight fast at 07:30 h
(−120 min; Fig. 1). Two i.v. catheters were inserted into
contralateral forearm veins. A continuous infusion
(0.036 mg [kg body weight (BW)]−1 min−1 ) of
D-[6,6-2H2]glucose (99% enrichment; Cambridge Isotope
Laboratories, Andover, MA, USA) was given from
−120 min to +480min [11], following a 10-min priming bolus
(0.36 mg [kg BW]−1 min−1 [mg/dl fasting blood glucose]). At
0 min, participants received one of three interventions: (1)
PAL ~1.18 g/kg BW (48% saturated FA, 35% monounsatu-
rated FA, 15% polyunsaturated FA; Biopalm, Landkrone,
Hamburg, Germany); (2) SAF ~1.18 g/kg BW (8% saturated
FA, 65% monounsaturated FA, 23% polyunsaturated FA;
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Fig. 1 Study design. Lean, healthy adults (10 male and 6 female)
randomly ingested either one dose of PAL, SAF or VCL (water) at time
point 0 min on three occasions during a period of 12 weeks. Starting at
−120 min, D-[6,6-2H2]glucose was infused up to +480 min. Muscle

biopsies were taken at time points −60 min, +120 min, +240 min and
+420 min. From +360 min to +480 min, a hyperinsulinaemic–
euglycaemic clamp test was performed according to the ‘hot’ glucose
infusion (hot-GINF) protocol
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Mazola, Elmshorn, Germany); or (3) control (VCL) ~1.18 ml/
kg BWof bottled still water (Ahrtal Quelle, Sinzig, Germany).
Participants drank 92 g (if BW>70 kg) or 80 g (if BW<70 kg)
of the lipid drinks (heated up to 60°C, mixed with 1.84 g or
1.60 g emulsifier [Glice; Texturas, Albert y Ferran Adria,
Barcelona, Spain], 9 g or 8 g sugar-free vanilla syrup
[Torani, San Francisco, CA, USA] and 81.2 ml or 70.4 ml
bottled still water, respectively. The VCL drink contained
173.2 ml or 150.4 ml still water. Participant and investigator
were blinded to treatment sequence. Each intervention (0 min)
was followed by a hyperinsulinaemic–euglycaemic clamp: a
bolus of 80 mU m−2 (body surface area [BSA]) min−1 for
8 min, followed by continuous infusion of 40 mU m−2

(BSA) min−1 of human short-acting insulin (Insuman Rapid;
Sanofi, Frankfurt, Germany) from +360 min to +480 min.
Blood glucose was maintained at 5 mmol/l by adapting rates
of the 20% glucose infusion (Braun, Melsungen, Germany),
enriched with D-[6,6-2H2]glucose (ESM Fig. 2). Further blood
samples were collected at timed intervals [6]. Vital function
(heart rate, BP, body temperature) was monitored every
60 min.

Indirect calorimetry Indirect calorimetry was performed in the
canopy mode using Vmax Encore 29n (CareFusion,
Höchberg, Germany) during the last 30 min of the pre-basal,
basal and clamp periods [5, 11].

Skeletal muscle biopsy Biopsies were taken at −60, +120,
+240 and + 420 min from the vastus lateralis muscle of both
legs. Under local anaesthesia, muscle specimens were
obtained by a modified Bergström needle with suction
and were immediately blotted free of extramyocellular
tissue or blood, frozen in liquid nitrogen, weighed and
stored at −80°C [5].

Plasma FA analysis NEFA were analysed as their FA methyl
esters (FAMEs) using GC–MS, as described in detail else-
where [10, 14]. Direct transesterification of all classes of lipids
was carried out in a one-step reaction [14]. In brief, lipids were
extracted from plasma after addition of internal standard
(heptadecanoic acid) using isopropyl alcohol–heptane–sulfu-
ric acid (40:10:1) (Merck, Darmstadt, Germany) and 0.01%
butylated hydroxytoluene (≥99%, B1378; Sigma-Aldrich, St
Louis, MO, USA). Lipids were separated by thin-layer chro-
matography using heptane–diethylether–acetic acid (80:30:1)
(Merck) as mobile phase. FAs were extracted from silica gel
in benzol–methanol (1:4) (Merck) overnight and derivatised
to their corresponding methyl esters by addition of acetyl
chloride (Merck) and incubation at 100°C for 1 h. After addi-
tion of benzol (Merck) and centrifugation, the FAME-
containing supernatant fraction was analysed on a Hewlett
Packard 6890 gas chromatograph (Palo Alto, CA, USA)
interfaced to a Hewlett Packard 5975 mass selective detector.

Calibration curves of reference FAs were processed in parallel
for quantification [10].

Myocellular lipids For quantification of lipid metabolites in
subcellular compartments, lipids were extracted, purified and
analysed from frozen tissue samples, using liquid chromatog-
raphy tandem-mass spectrometry (LC-MS/MS) as previously
described [5, 15].

Myocellular signalling Insulin signalling was assessed by
western blotting. Total soluble proteins were extracted from
approximately 30 mg of frozen skeletal muscle and homoge-
nised in 300 μl of lysis buffer (25 mol/l Tris-HCl, 1 mmol/l
EDTA, 150 mmol/l NaCl, 0.20% NP-40) with protease
(cOmplete Tablets, EASYpack; Roche Diagnostics, Basel,
Switzerland) and phosphatase (PhosSTOP, EASYpack;
Roche Diagnostics) inhibitors. Activities of PKCs were
assessed from the ratios of the protein contents in membrane
and cytosol fractions upon differential centrifugation. A total
of 50 mg of frozen muscle tissue was homogenised in 300 μl
of lysis buffer A (25 mmol/l Tris-HCL, 1 mmol/l EDTA,
150 mmol/l NaCl, 0.20% NP-40, with protease and phospha-
tase inhibitors), centrifuged (100,000 g, 1 h at 4°C), and the
supernatant fraction containing the cytosolic fraction was
transferred into a fresh tube, while the pellet was dissolved
in 110 μl of buffer B (250mmol/l Tris-HCL, 1 mmol/l EDTA,
0.25 mmol/l EGTA, 2% Triton X-100) using a homogeniser.
A second centrifugation step (100,000 g, 1 h at 4°C) was
performed, and the supernatant (membrane fraction) was
collected [16]. Proteins concentrations were determined using
the BCA (bicinchoninic acid) Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA). Aliquots of 30 μg of total
proteins, as well as cytosolic and membrane fractions, were
loaded onto an SDS–polyacrylamide gradient gel (4–20%
Mini-PROTEAN TGX Precast Protein Gels 190; Bio-Rad,
CA, USA) and electrophoresed. After blocking, the
membranes were incubated with primary antibodies diluted
1:1000, if not differently specified, in combination with the
respective horseradish peroxidase (HRP)-conjugated second-
ary anti-rabbit antibody, diluted 1:2500, or anti-mouse, diluted
1:1000. Primary antibodies, purchased from Cell Signaling
Technology (Danvers, MA, USA), were as follows: Akt
(9272); serine473-phosphorylation of Akt (9271); serine1101-
phosphorylation of IRS-1 (2385); stress-activated protein
kinase (SAPK)/ c-Jun N-terminal kinase (JNK) (9252); thre-
onine183-phosphorylation and thyrosine185-phosphorylation
of SAPK/JNK (9251); PP2A subunit (2041); aPKCζ (9372);
and GAPDH (2118; 1:5000) as housekeeping protein for the
soluble and cytosolic fractions. nPKCθ (610090) and nPKCε
(610086) were obtained from BD Biosciences, IRS-1 (06–
248) from Millipore, and Na+/K+-ATPase, as housekeeping
protein for membrane fractions, from Abcam (Ab76020;
1:10,000). Proteins were detected using a Bio-Rad
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ChemiDoc MP Imaging System in combination with
ImageLab 6.0.1 software (Bio-Rad 199 Laboratories) for
densitometric analysis. Data are expressed in arbitrary units
and normalised to housekeeping protein.

Mitochondrial content and functionMitochondrial respiration
was assessed by high-resolution respirometry (Oxygraph 2 k,
O2k; Oroboros instruments, Innsbruck, Austria) in freshly
harvested permeabilised muscle fibres after applying sequen-
tial substrate–uncoupler–inhibitor protocols as described else-
where [17]. H2O2 emission from permeabilised muscle fibres
was quantified by high-resolution respirometry with Amplex
Red as previously described [17]. Citrate synthase activity
(CSA) was measured spectrophotometrically (CSA Kit;
Sigma-Aldrich) as a surrogate marker for mitochondrial
content. Mitochondrial respiration and H2O2 emission were
normalised to individual CSA values to account for differ-
ences in mitochondrial content.

Circulating metabolites and hormones Plasma concentrations
of insulin, gastric inhibitory polypeptide (GIP), glucagon-like
peptide-1 (GLP-1), glycerol, glucagon, NEFA, cortisol,
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), triacylglycerols and chylomicrons as well as blood
concentration of glucose and HbA1c were measured as
described elsewhere [11]. Plasma glycerol was measured
enzymatically (r-Biopharm, Darmstadt, Germany). Serum
concentrations of IL-6 and TNF-α were quantified using the
respective Quantikine HS ELISA kits (R&D Systems/
BioTechne, Wiesbaden, Germany) [11].

2H-labelled glucoseMeasurement of blood [2H2]glucose atom
percent enrichment was performed on a Hewlett Packard 6890
gas chromatograph equipped with a 25 m CPSil5CB capillary
column (0.2 mm i. d., 0.12 μm film thickness; Chrompack/
Varian, Middelburg, the Netherlands) and interfaced to a
Hewlett Packard 5975 mass selective detector [11].

Calculations During basal and clamp periods, whole-body
rate of glucose disposal (Rd) was calculated from
[2H2]glucose enrichments (Steele’s steady-state equation).
During the basal period, Rd was given as Rd divided by the
mean plasma insulin levels of the last 30 min of the respec-
tive period (+330 min to +360 min) [10]. Endogenous
glucose production (EGP) was calculated from the rate of
appearance (Ra) and was expressed as EGP × insulin levels
of the last 30 min of basal period (+330 min to +360 min)
[18]. During the steady-state clamp period (+450 min to
+480 min), EGP suppression (in %) was calculated to esti-
mate hepatic insulin sensitivity [10]. Incremental areas
under the curve (iAUCs) were calculated (basal and clamp
period combined) using the trapezoidal rule corrected for
the respective AUC [10].

Statistics The power calculation is based on a previous study
on oral lipid-induced insulin resistance, using two simulta-
neous two-sided paired t tests, resulting in a sample size of
n = 16 with a multiplicity adjusted α of 0.025 and a power of
85% [5]. Results are presented as means ± SEM (figures),
means ± SD for normally distributed variables or median with
IQR (first to third quartile) for log normally distributed vari-
ables (ESM Table 1) and compared by mixed model repeated
measures ANOVA adjusted to BMI, age and sex and with
Tukey–Kramer correction. Comparison of changes within
one participant was done using a two-side paired t test.
Variables with skewed distributions were loge-transformed
before analysis. Statistical significance of differences was
defined at p < 0.05. Calculations were performed using SAS
version 9.4 (SAS Institute).

Results

PAL and SAF similarly increase plasma chylomicrons but only
PAL raises palmitic acid concentrations Time-dependent
changes were analysed by comparing the iAUC. After
both interventions, plasma chylomicrons similarly
increased by ~65% from the pre-basal period (p = 0.006
for PAL vs VCL; p = 0.010 for SAF vs VCL; Fig. 2a).
Likewise, plasma triacylglycerols increased by ~37%
and ~28% after PAL and SAF, respectively (p = 0.004
for PAL vs VCL; p = 0.002 for SAF vs VCL; Fig. 2b).
Plasma total NEFA were 13% and 24% higher after PAL
compared with SAF or VCL, respectively (p = 0.0008 and
p = 0.0005; Fig. 2c). During the basal period, after PAL,
plasma palmitic acid was ~80% higher than after SAF or
VCL (p = 0.0010 and p = 0.0005, respectively; Fig. 2d).
Plasma oleic acid increased by ~75% after SAF and by
~54% after PAL, compared with VCL (p = 0.022 and p
= 0.042, respectively; Fig. 2e). Plasma linoleic acid rose
by ~82% after SAF and by ~78% after PAL, compared
with VCL (p = 0.001 and p = 0.036, respectively; Fig.
2f). There were a few differences for other NEFA species
at certain time points, but the respective iAUCs for the
PAL and SAF interventions were comparable (ESM
Table 2).

PAL and SAF raise plasma glucagon and GIP but only SAF
raises plasma GLP-1 Time-dependent changes were analysed
by comparing the iAUC of the respective parameters. From
the pre-basal period, plasma GIP increased eightfold and five-
fold after SAF and PAL, respectively (p = 0.009 and p =
0.012 vs VCL; Fig. 3a). After SAF, plasma GLP-1 increased
by sixfold and 2.5-fold compared with VCL and PAL, respec-
tively (p = 0.001 and p = 0.039; p = 0.071 for PAL vs VCL;
Fig. 3b). During the basal period, plasma glucagon was ~25%
and ~20% higher after PAL and SAF, respectively, compared
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with VCL (p = 0.021 and p = 0.044; Fig. 3c). Plasma insulin
and blood glucose did not differ between the interventions
(Fig. 3d,e). Plasma glycerol decreased (by ~30% from pre-
basal period), only after PAL, compared with VCL (p =
0.041; Fig. 3f).

PAL and SAF lead to whole-body insulin resistance during
postprandial hyperinsulinaemia During the basal period,
whole-body resting energy expenditure (REE) (PAL 7317 ±
309 kJ/day; SAF 7606 ± 267 kJ/day; VCL 7296 ± 259 kJ/
day), rates of lipid oxidation (LOX) (PAL 1.0 ±
0.1 mg kg−1 min−1; SAF 1.1 ± 0.2 mg kg−1 min−1; VCL
1.1 ± 0.1 mg kg−1 min−1) and glucose oxidation (GOX)
(PAL 2 . 2 ± 0 . 2 mg kg − 1 m i n − 1 ; SAF 2 . 1 ±
0.5 mg kg−1 min−1; VCL 2.1 ± 0.2 mg kg−1 min−1) were
not different between the interventions. Only after PAL,

whole-body glucose disappearance (Rd/insulin) was 28%
lower (p = 0.036; Fig. 4a) and EGP × insulin was 38%
higher compared with VCL (p = 0.009; Fig. 4b).

During the steady-state of the clamp, reflecting postprandi-
al hyperinsulinaemia (Fig. 3d and ESM Table 3), REE was
also comparable between the interventions (PAL 7556 ±
330 kJ/day; SAF 7543 ± 305 kJ/day; VCL 7368 ± 284 kJ/
day). After PAL and SAF, LOX was 85% and 70% higher
compared wi th VCL, respec t ive ly (PAL 3.4 ±
0.9 mg kg−1 min−1 [p = 0.013 vs VCL]; SAF 2.0 ±
0.7 mg kg−1 min−1 [p = 0.019 vs VCL]; VCL 0.5 ±
0.2 mg kg−1 min−1). Insulin-stimulated Rd was 49% and
36% lower after PAL and SAF, respectively, compared with
VCL (p < 0.0001 and p = 0.0002; Fig. 4c), partly due to 69%
and 76% lower GOX after PAL and SAF (p = 0.003 and p =
0.004 vs VCL, respectively; Fig. 4d). Further, insulin-

Fig. 2 Time courses of
circulating lipid metabolites in
healthy humans. Plasma
concentrations of chylomicrons
(a), triacylglycerol (b), total
NEFA (c), palmitic acid (d), oleic
acid (e) and linoleic acid (f) after
ingestion of PAL (red), SAF
(blue) or VCL (water, grey) at
0 min. Data are shown as means ±
SEM; n = 16 (chylomicrons n =
10). *p < 0.05, **p < 0.01 and
***p < 0.001 vs VCL at same
time point; †p < 0.05 for PAL vs
SAF at same time point (ANOVA
adjusted for repeated measures
with Tukey–Kramer correction
for each time point between
interventions). P-basal, pre-basal
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stimulated Rd was 13% lower after PAL than after SAF (p
= 0.041), due to 59% lower non-oxidative glucose
disposal (NOXGD) (p = 0.008 vs SAF; Fig. 4e).
Hepatic insulin resistance was 39% and 24% lower after
PAL and SAF (p < 0.0001 and p = 0.0010 vs VCL,
respectively; Fig. 4f). No sex differences were found
between interventions (ESM Fig. 3).

PAL and SAF associate with the DAG–nPKC pathway Time-
dependent changes were analysed by comparing the iAUC
of the respective parameters. Across basal and clamp
periods combined, the concentration of 18–1:18–1; 16–
0:16–0; 16–0:18–1 DAG species in the membrane compart-
ment was increased by ~43% (p = 0.032) after PAL and by
~30% (p = 0.041) after SAF (Fig. 5a). The accumulation of

these DAG species in lipid droplets increased by ~25%
after PAL only (p = 0.034 vs VCL; p = 0.122 vs SAF;
Fig. 5b). Membrane translocation of nPKCε increased by
75% after PAL (p = 0.003 vs VCL; p < 0.0001 vs SAF;
Fig. 5c) and tended to rise after SAF but did not reach
statistical significance (p = 0.061 vs VCL). Activation of
nPKCθ was 94% higher with PAL (p = 0.004 vs VCL; p =
0.009 vs SAF) and 31% higher with SAF (p = 0.041 vs
VCL; Fig. 5d). Myocellular serine1101-phosphorylation of
IRS-1 was increased by 57% and 52% upon PAL and SAF
ingestion (p = 0.037 and p = 0.039, respectively, vs VCL;
Fig. 5e, f).

PAL further associates with the ceramide–aPKCζ–PP2A path-
way Time-dependent changes were analysed by comparing

Fig. 3 Time courses of
circulating hormones and
metabolites in healthy humans.
Concentrations of plasmaGIP (a),
plasma GLP-1 (b), plasma
glucagon (c), plasma insulin (d),
blood glucose (e) and plasma
glycerol (f) are presented after
ingestion of PAL (red), SAF
(blue) or VCL (water, grey) at
0 min. Data are shown as means ±
SEM; insulin and blood glucose
n = 16; GIP, GLP-1, glucagon
and glycerol, n = 4. *p < 0.05,
**p < 0.01 and ***p < 0.001 vs
VCL at same time point;
†p < 0.05 and ††p < 0.01 for
PAL vs SAF at same time point
(ANOVA adjusted for repeated
measures with Tukey–Kramer
correction for each time point
between interventions). P-basal,
pre-basal
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the iAUC of the respective parameters. After PAL only,
concentrations of 16:0; 18:0; 18:1 ceramide species increased
in the membrane compartment, compared with after VCL
(~30% increase, p = 0.022 for PAL vs VCL; p = 0.078 for
SAF vs VCL; Fig. 6a and ESM Table 4). Similarly, concen-
trations of these ceramide species in lipid droplets were ~30%
and ~20% higher after PAL than after VCL or SAF (p =
0.017 PAL vs VCL; p = 0.025 PAL vs SAF; Fig. 6b).
Membrane-to-cytosol translocation of aPKCζ was ~69%
and ~59% higher after PAL than after VCL (p = 0.013) or
SAF (p = 0.035; Fig. 6c), respectively. In addition, PAL
induced a ~35% higher myocellular PP2A expression, when
compared with VCL (p = 0.031) or SAF (p = 0.039; Fig. 6d).
Only after PAL, serine473-phosphorylation of Akt was
reduced by 40% and 36% compared with VCL (p = 0.022)
or SAF (p = 0.034; Fig. 6e,f), respectively.

PAL and SAF do not acutely affect mitochondrial oxidative
capacity During the basal period, SAF and PAL, compared
with VCL ingestion, had no effect on total muscle CSA, maxi-
mum coupled and uncoupled mitochondrial oxidative capac-
ity from succinate and carbonyl cyanide p-trifluoro-
methoxyphenyl hydrazine (FCCP) normalised to CSA, β-
oxidation from octanoyl-carnitine related to CSA, H2O2

emission normalised to CSA and leak control ratio, which
reflects increased proton leak across the mitochondrial
membrane (ESM Fig. 4a–f).

PAL and SAF do not acutely affect biomarkers of inflamma-
tion Variables of inflammation in the circulation (IL-6,
TNF-α , cort isol) and in skeletal muscle (c-JNK,
phosphorylated JNK) did not differ between interventions
during basal and clamp periods (ESM Table 5).

Discussion

This study shows that a single lipid load, regardless of its FA
composition, causes whole-body and hepatic insulin resistance.
Palmitate-rich lipid ingestion was associated with activation of
the myocellular DAG–nPKC pathway, leading to inhibitory
serine1101-phosphorylation of IRS-1, already during basal
insulinaemia. Of note, PAL also increased myocellular
ceramide content, which may contribute to skeletal muscle
insulin resistance via activation of aPKCζ and PP2A and inhi-
bition of Akt. Furthermore, neither palmitate- nor oleate-
containing lipid loads acutely affected mitochondrial oxidative
capacity or inflammatory pathways in human skeletal muscle.

Fig. 4 Rates of whole-body
glucose disposal (Rd) and EGP
during basal and clamp periods
in healthy humans. (a, b)
During the last 30 min of basal
period (+330 min to
+360 min), rates of glucose
metabolism are presented in
the context of the ambient
plasma insulin concentration:
Rd/insulin (a) and EGP ×
insulin (b). (c–f) During clamp
steady-state (+450 min to
+480 min), insulin-stimulated
Rd (c), rate of GOX (d), rate of
NOXGD (e) and EGP
suppression (f) are presented
after PAL (red), SAF (blue) or
VCL (water, grey) ingestion
at 0 min. Data are shown
as means ± SEM; n = 16.
*p < 0.05, **p < 0.01 and
***p < 0.001 vs VCL;
†p < 0.05 and ††p < 0.01 for
PAL vs SAF (ANOVA
adjusted for repeated measures
with Tukey–Kramer
correction)
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Both SAF (enriched in oleate) and PAL (enriched in palmi-
tate and oleate) decreased whole-body insulin sensitivity
under hyperinsulinaemic conditions. Compared with SAF,
PAL had a somewhat more pronounced inhibitory effect on
insulin sensitivity during the clamp test, with reduction in
insulin-stimulated NOXGD as well as glucose disposal during
the basal period of fasting insulinaemia, as seen inmost [5, 11]
but not all human studies [12]. Of note, lipid loading may
cause substantial substrate competition, particularly in the
absence of insulin stimulation. In the present study, SAF and
PAL did not seem to affect the LOX/GOX ratio during the
basal period and LOXwas only nominally higher under clamp
conditions. Taken together, both lipid interventions markedly
decreased insulin-stimulated whole-body glucose disposal, at
least partly due to NOXGD, which mainly reflects skeletal
muscle insulin resistance.

So far, most controlled human studies investigating lipid-
induced insulin resistance have used i.v. or oral mixed lipid
challenges without distinguishing between the degrees of FA
saturation [19]. The present study now extends these previous
results [5, 6, 19, 20] in that both single lipid meals, but espe-
cially PAL already during the basal period, acutely increased
membrane C18-containing DAG species, followed by nPKCθ
translocation, serine1101-phosphorylation of IRS-1 and whole-
body insulin resistance. This sequence of events has been also
demonstrated for i.v. infusion of lipids and supports the causal
relationship observed in in vitro studies [21]. The subsequent
decrease in nPKCθ during the clamp could be due to insulin-
dependent lowering of intracellular FA-CoA levels, which
may synergistically activate nPKCs [22]. Later in the course
of study, DAG species also accumulated in the lipid droplet
compartment, likely reflecting elevated triacylglycerol

Fig. 5 Myocellular lipid
metabolites and insulin signalling
(DAG–nPKC pathway) in
healthy humans. DAG species
18–1:18–1, 16–0:16–0 and 16–
0:18–1 in the cell membrane
fraction (a), DAG species 18–
1:18–1, 16–0:16–0 and 16–0:18–
1 in the lipid droplet fraction (b),
nPKCε activation (c), nPKCθ
activation (d) and IRS-1 levels (e)
as well as serine1101-
phosphorylation of IRS-1 relative
to IRS-1 (f) during the pre-basal,
basal and clamp periods after
ingestion of PAL (red), SAF
(blue) or VCL (water, grey) at
0 min. Expression signals on
immunoblots are expressed in
arbitrary units (AU) after
normalising against GAPDH for
total and cytosolic proteins and
against Na+/K+-ATPase for
membrane proteins. Data are
shown as means ± SEM; n =
16 at time point −60 min, n =
10 at +120 min, n = 6 at
+240 min and +420 min. *p <
0.05 vs VCL at same time point
(ANOVA adjusted for repeated
measures with Tukey–Kramer
correction for each time point
between interventions). LD, lipid
droplet fraction; P-basal, pre-
basal
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synthesis. Of note, the present study did not further analyse
the C-18-containing DAG for its 1,2 stereoisomers, which are
the bioactive mediators of insulin resistance [1, 20]. In line,
previous studies indicate that palmitate exposure can induce
higher myocellular DAG production than oleate [23, 24],
associated with lower insulin-stimulated myocellular glucose
uptake [25]. Furthermore, we observed increased nPKCɛ
translocation after PAL but not SAF. Previous studies have
linked lipid-mediated insulin resistancemainly to nPKCθ acti-
vation in rodents [26] and humans [5, 6]. However, higher
skeletal muscle nPKCɛ activity was demonstrated in obesity
or type 2 diabetes, compared with lean humans, as well [20].

Interestingly, only the single palmitate-rich lipid ingestion
but not the oleate-rich lipid ingestion also increased the
myocellular ceramide content, again first in the membrane
and then in lipid droplets, the cellular lipid repository [15].

This was accompanied by activation of the aPKCζ–PP2A
pathway [27, 28], by which membrane-bound ceramide is
known to inhibit serine473-phosphorylation of Akt [29].
Exclusively, PAL decreased the myocellular serine473-phos-
phorylated Akt/Akt ratio during hyperinsulinaemia, indicating
decreased distal insulin signalling. In an obese mouse model,
inhibition of serine palmitoyl-transferase-1, an enzyme
involved in de novo synthesis of ceramides from saturated
FA, led to acute improvement of muscle Akt phosphorylation
and insulin sensitivity [30, 31]. Thus, the lack of a similar
effect with SAF despite the observed insulin resistance could
result from different lipotoxic synthesis pathways based on the
degree of saturation of the ingested FA intervention [32].
Alternatively, higher total and other NEFA concentrations
following PAL vs SAF may explain PAL’s more pronounced
inhibitory effect on Akt.

Fig. 6 Myocellular lipid
metabolites and insulin signalling
(ceramide–aPKC pathway) in
healthy humans. Ceramide
species 16:0, 18:0 and 18:1 in the
cell membrane fraction (a),
ceramide species 16:0, 18:0 and
18:1 in the lipid droplet fraction
(b), aPKCζ activation (c), PP2A
(d), Akt (e) and serine473-
phosphorylation of Akt relative to
Akt (f) after ingestion of PAL
(red), SAF (blue) or VCL (water,
grey) at 0 min. Expression signals
on immunoblots are expressed in
arbitrary units (AU) after
normalising against GAPDH for
total and cytosolic proteins and
against Na+/K+-ATPase for
membrane proteins. Data are
shown as means ± SEM; n =
16 at time point −60 min, n =
10 at +120 min, n = 6 at
+240 min and +420 min. *p <
0.05 vs VCL at same time point;
†p < 0.05 for PAL vs SAF at
same time point (ANOVA
adjusted for repeated measures
with Tukey–Kramer correction
for each time point between
interventions). P-basal; pre-basal

310 Diabetologia (2022) 65:301–314



Generally, saturated fat, particularly palmitate, has been
associated with reduced whole-body insulin sensitivity [33].
A 7-day diet intervention in lean women but not men linked a
palmitate-rich diet to higher myocellular ceramides with lower
insulin sensitivity compared with an oleate-rich diet [34]. Of
note, in cultured human myotubes, the addition of an equal
amount of oleate suddenly improved palmitate-induced
ceramide-mediated insulin resistance [25, 35]. This mitigating
effect of oleate on lipotoxicity through palmitate-induced
increase in ceramides has been previously explained by
augmented mitochondrial FA metabolism [36], although
oleate and palmitate compared with palmitate alone were able
to increase triacylglycerol storage, thereby preventing DAG
accumulation and insulin resistance at least in cultured muscle
cells [23].

Our study further confirms an increase in membrane C16-
to C18-ceramide species, which were acutely increased in lean
and obese humans in the context of insulin resistance upon
palmitate ingestion [37]. Another study found an inverse rela-
tionship between elevated myocellular ceramides and insulin
sensitivity in lean men after an i.v. infusion of mixed lipids/
heparin [38]. In addition, Perreault et al reported a relationship
of sarcolemmal ceramides, but not DAG, with human insulin
resistance [20]. Of note, other studies found neither alterations
of myocellular sphingolipids nor relationships with insulin
sensitivity in people who were obese and/or had type 2 diabe-
tes [6, 39, 40]. In addition, the finding that unsaturated FA can
induce insulin resistance without elevating ceramide content
suggests that the ceramide-mediated impairment of distal
insulin signalling may not be mandatory for lipid-induced
insulin resistance [41]. However, the observation that the
palmitate-induced increase in myocellular ceramides appears
to aggravate acute lipid-mediated insulin resistance when
compared with oleate alone supports the hypothesis of syner-
gic inhibition of insulin signalling by different lipid mediators,
at least under conditions of a single oral lipid load [42].
Furthermore, the palmitate-enriched intervention also resulted
in lower EGP during basal insulinaemia, which would favour
higher rates of gluconeogenesis and lipogenesis [10, 11].
During the clamp, both SAF and, more markedly, PAL
decreased hepatic insulin sensitivity. This is remarkable, as
this one-step clamp was not primarily designed to examine
hepatic insulin action, indicating a strong stimulatory effect
on EGP, which may be explained by FA-induced allosteric
stimulation of gluconeogenesis and, to a minor extent, by
increased glycerol uptake, serving as gluconeogenic substrate
[1, 2]. In addition, incretin-mediated changes in portal insulin
and glucagon concentrations maymask the effects of oral lipid
intake on hepatic glucose metabolism [43]. Furthermore,
higher GLP-1 concentrations may lead to increased NEFA
uptake from plasma chylomicrons and suppression of FA
spillover into the circulation [44]. This could explain the
absent increase in NEFA despite elevated chylomicrons after

SAF vs PAL seen in the current study. Previous acute high-fat
diet intervention studies demonstrated similar [10, 11] or no
effects in humans [5, 45], suggesting that the different results
are not due to lipid composition but rather due to study design
or total energy intake.

Interestingly, the present study failed to detect changes in
circulating inflammatory cytokines, cortisol or classical cellu-
lar inflammatory pathways in line with previous studies on
acute effects of saturated [11] and monounsaturated FAs in
humans [5, 10]. This underlines that the known increase of
low-grade inflammation occurring upon high-fat diet [34] is
not involved in the acute initiation of muscle insulin resistance
but rather results over time from secondary alterations, likely
arising from adipose tissue dysfunction [1]. Likewise, the
present study found no acute effects of PAL or SAF onmuscle
mitochondrial enzyme activity, oxidative capacity or H2O2

emission during the basal period, in line with previous studies
[46], supporting the concept that lipotoxic signalling is the
primary event of lipid-induced muscle insulin resistance,
regardless of the lipid composition. Nevertheless, excessive
mitochondrial H2O2 production has been linked to insulin
resistance in a high-fat diet model in rodents and humans
[47], indicating effects on mitochondrial function operating
during long-term lipid overfeeding.

The present study benefits from the serial biopsies allowing
for real-timemonitoring and analyses of the sequence of cellu-
lar events in human skeletal muscle, although by design it
cannot provide a definite mechanistic proof. Limitations
include the use of pure oils, rather than the consumption of
mixed meals. In addition, using water as control will lead to
specific metabolic and endocrine conditions (e. g. substrate
competition, lipolysis with endogenous NEFA spill-out [48]
and low level postprandial incretins). The lipid interventions
were designed to be isoenergetic (~3012 kJ) so that differ-
ences in effects are unlikely to be due to energy intake.
Also, the fact that no strict monitoring of diet and exercise
was feasible on the days before the interventions might have
influenced the acute lipid overload response. Moreover, the
results of this short-term study in healthy humans cannot be
necessarily extrapolated to chronic lipid oversupply or
common insulin resistance of obesity and type 2 diabetes.
Nevertheless, our approach represents an accepted compro-
mise between optimal experimental and near-physiological
conditions to allow for assessing acute metabolic changes
[10–12].

In conclusion, this short-term study reveals that raising
plasma oleate with and without palmitate concentrations is
associated with activation of the myocellular DAG–nPKC
pathway and muscle insulin resistance. The acute increase in
plasma palmitate also favours ceramide accumulation and
aPKCζ–PP2A activation, which can further aggravate muscle
insulin resistance. The possible role of lipid interactions, such
as modulation by oleate of the palmitate-induced inhibitory
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signalling events, remains to be investigated. All these effects
seem to occur in the absence of changes in mitochondrial
capacity or inflammatory pathways, underlining the relevance
of lipotoxic pathways as therapeutic targets to prevent and
reverse muscle insulin resistance in humans. Finally, further
studies are required to prove the effects of diets containing
different lipids in healthy and insulin-resistant humans.
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